Stable reliability diagrams for probabilistic classifiers

Author:

Dimitriadis TimoORCID,Gneiting TilmannORCID,Jordan Alexander I.ORCID

Abstract

A probability forecast or probabilistic classifier is reliable or calibrated if the predicted probabilities are matched by ex post observed frequencies, as examined visually in reliability diagrams. The classical binning and counting approach to plotting reliability diagrams has been hampered by a lack of stability under unavoidable, ad hoc implementation decisions. Here, we introduce the CORP approach, which generates provably statistically consistent, optimally binned, and reproducible reliability diagrams in an automated way. CORP is based on nonparametric isotonic regression and implemented via the pool-adjacent-violators (PAV) algorithm—essentially, the CORP reliability diagram shows the graph of the PAV-(re)calibrated forecast probabilities. The CORP approach allows for uncertainty quantification via either resampling techniques or asymptotic theory, furnishes a numerical measure of miscalibration, and provides a CORP-based Brier-score decomposition that generalizes to any proper scoring rule. We anticipate that judicious uses of the PAV algorithm yield improved tools for diagnostics and inference for a very wide range of statistical and machine learning methods.

Funder

German Research Foundation

Klaus Tschira Foundation

Helmholtz Association

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference53 articles.

1. Probabilistic prediction in patient management and clinical trials

2. Diagnostic verification of probability forecasts;Murphy;Int. J. Forecast.,1992

3. P. A. Flach , “Classifier calibration” in Encyclopedia of Machine Learning and Data Mining, C. Sammut, G. I. Webb, Eds. (Springer, New York, 2016), pp. 210–217.

4. C. Guo , G. Pleiss , Y. Sun , K. Q. Weinberger , “On calibration of modern neutral networks” in ICML’17: Proceedings of the 34th International Conference on Machine Learning, D. Precup , Y. W. Teh , Eds. (PMLR, Cambridge, MA, 2017), pp. 1321–1330.

5. Some remarks on the reliability of categorical probability forecasts;Bröcker;Mon. Weather Rev.,2008

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3