Master curve of boosted diffusion for 10 catalytic enzymes

Author:

Jee Ah-Young,Tlusty TsviORCID,Granick SteveORCID

Abstract

Molecular agitation more rapid than thermal Brownian motion is reported for cellular environments, motor proteins, synthetic molecular motors, enzymes, and common chemical reactions, yet that chemical activity coupled to molecular motion contrasts with generations of accumulated knowledge about diffusion at equilibrium. To test the limits of this idea, a critical testbed is the mobility of catalytically active enzymes. Sentiment is divided about the reality of enhanced enzyme diffusion, with evidence for and against. Here a master curve shows that the enzyme diffusion coefficient increases in proportion to the energy release rate—the product of Michaelis-Menten reaction rate and Gibbs free energy change (ΔG)—with a highly satisfactory correlation coefficient of 0.97. For 10 catalytic enzymes (urease, acetylcholinesterase, seven enzymes from the glucose cascade cycle, and one other), our measurements span from a roughly 40% enhanced diffusion coefficient at a high turnover rate and negativeΔGto no enhancement at a slow turnover rate and positiveΔG. Moreover, two independent measures of mobility show consistency, provided that one avoids undesirable fluorescence photophysics. The master curve presented here quantifies the limits of both ideas, that enzymes display enhanced diffusion and that they do not within instrumental resolution, and has possible implications for understanding enzyme mobility in cellular environments. The striking linear dependence of ΔGfor the exergonic enzymes (ΔG<0), together with the vanishing effect for endergonic enzyme (ΔG>0), are consistent with a physical picture in which the mechanism boosting the diffusion is an active one, utilizing the available work from the chemical reaction.

Funder

Institute for Basic Science

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3