Abstract
Global and regional atmospheric measurements and modeling can play key roles in discovering and quantifying unexpected nascent emissions of environmentally important substances. We focus here on three hydrochlorofluorocarbons (HCFCs) that are restricted by the Montreal Protocol because of their roles in stratospheric ozone depletion. Based on measurements of archived air samples and on in situ measurements at stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, we report global abundances, trends, and regional enhancements for HCFC-132b (CH2ClCClF2), which is newly discovered in the atmosphere, and updated results for HCFC-133a (CH2ClCF3) and HCFC-31 (CH2ClF). No purposeful end-use is known for any of these compounds. We find that HCFC-132b appeared in the atmosphere 20 y ago and that its global emissions increased to 1.1 Gg⋅y−1 by 2019. Regional top-down emission estimates for East Asia, based on high-frequency measurements for 2016–2019, account for ∼95% of the global HCFC-132b emissions and for ∼80% of the global HCFC-133a emissions of 2.3 Gg⋅y−1 during this period. Global emissions of HCFC-31 for the same period are 0.71 Gg⋅y−1. Small European emissions of HCFC-132b and HCFC-133a, found in southeastern France, ceased in early 2017 when a fluorocarbon production facility in that area closed. Although unreported emissive end-uses cannot be ruled out, all three compounds are most likely emitted as intermediate by-products in chemical production pathways. Identification of harmful emissions to the atmosphere at an early stage can guide the effective development of global and regional environmental policy.
Publisher
Proceedings of the National Academy of Sciences
Reference53 articles.
1. Quantifying greenhouse-gas emissions from atmospheric measurements: a critical reality check for climate legislation
2. Nitrogen trifluoride global emissions estimated from updated atmospheric measurements
3. Q. Liang , P. A. Newman , S. Reimann , “SPARC report on the mystery of carbon tetrachloride” (SPARC Tech. Rep. 7, WCRP-13/2016, ETH Zurich Institute for Atmospheric and Climate Science, Zurich, Switzerland, 2016).
4. An unexpected and persistent increase in global emissions of ozone-depleting CFC-11;Montzka;Nature,2018
5. Increase in CFC-11 emissions from eastern China based on atmospheric observations;Rigby;Nature,2019
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献