Steric interactions and out-of-equilibrium processes control the internal organization of bacteria

Author:

Miangolarra A. MovillaORCID,Li Sophia Hsin-Jung,Joanny Jean-François,Wingreen Ned S.ORCID,Castellana Michele

Abstract

Despite the absence of a membrane-enclosed nucleus, the bacterial DNA is typically condensed into a compact body—the nucleoid. This compaction influences the localization and dynamics of many cellular processes including transcription, translation, and cell division. Here, we develop a model that takes into account steric interactions among the components of the Escherichia coli transcriptional–translational machinery (TTM) and out-of-equilibrium effects of messenger RNA (mRNA) transcription, translation, and degradation, to explain many observed features of the nucleoid. We show that steric effects, due to the different molecular shapes of the TTM components, are sufficient to drive equilibrium phase separation of the DNA, explaining the formation and size of the nucleoid. In addition, we show that the observed positioning of the nucleoid at midcell is due to the out-of-equilibrium process of mRNA synthesis and degradation: mRNAs apply a pressure on both sides of the nucleoid, localizing it to midcell. We demonstrate that, as the cell grows, the production of these mRNAs is responsible for the nucleoid splitting into two lobes and for their well-known positioning to 1/4 and 3/4 positions on the long cell axis. Finally, our model quantitatively accounts for the observed expansion of the nucleoid when the pool of cytoplasmic mRNAs is depleted. Overall, our study suggests that steric interactions and out-of-equilibrium effects of the TTM are key drivers of the internal spatial organization of bacterial cells.

Funder

Agence Nationale de la Recherche

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3