Abstract
Oxygenic respiration and photosynthesis based on quinone redox reactions face a danger of wasteful energy dissipation by diversion of the productive electron transfer pathway through the generation of reactive oxygen species (ROS). Nevertheless, the widespread quinone oxido-reductases from the cytochrome bc family limit the amounts of released ROS to a low, perhaps just signaling, level through an as-yet-unknown mechanism. Here, we propose that a metastable radical state, nonreactive with oxygen, safely holds electrons at a local energetic minimum during the oxidation of plastohydroquinone catalyzed by the chloroplast cytochrome b6f. This intermediate state is formed by interaction of a radical with a metal cofactor of a catalytic site. Modulation of its energy level on the energy landscape in photosynthetic vs. respiratory enzymes provides a possible mechanism to adjust electron transfer rates for efficient catalysis under different oxygen tensions.
Funder
Wellcome Trust
HHS | National Institutes of Health
Publisher
Proceedings of the National Academy of Sciences
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献