Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation inMycobacterium tuberculosis

Author:

Puckett Susan,Trujillo Carolina,Wang Zhe,Eoh Hyungjin,Ioerger Thomas R.,Krieger Inna,Sacchettini James,Schnappinger Dirk,Rhee Kyu Y.,Ehrt Sabine

Abstract

The glyoxylate shunt is a metabolic pathway of bacteria, fungi, and plants used to assimilate even-chain fatty acids (FAs) and has been implicated in persistence ofMycobacterium tuberculosis(Mtb). Recent work, however, showed that the first enzyme of the glyoxylate shunt, isocitrate lyase (ICL), may mediate survival ofMtbduring the acute and chronic phases of infection in mice through physiologic functions apart from fatty acid metabolism. Here, we report that malate synthase (MS), the second enzyme of the glyoxylate shunt, is essential for in vitro growth and survival ofMtbon even-chain fatty acids, in part, for a previously unrecognized activity: mitigating the toxicity of glyoxylate excess arising from metabolism of even-chain fatty acids. Metabolomic profiling revealed that MS-deficientMtbcultured on fatty acids accumulated high levels of the ICL aldehyde endproduct, glyoxylate, and increased levels of acetyl phosphate, acetoacetyl coenzyme A (acetoacetyl-CoA), butyryl CoA, acetoacetate, and β-hydroxybutyrate. These changes were indicative of a glyoxylate-induced state of oxaloacetate deficiency, acetate overload, and ketoacidosis. Reduction of intrabacterial glyoxylate levels using a chemical inhibitor of ICL restored growth of MS-deficientMtb, despite inhibiting entry of carbon into the glyoxylate shunt. In vivo depletion of MS resulted in sterilization ofMtbin both the acute and chronic phases of mouse infection. This work thus identifies glyoxylate detoxification as an essential physiologic function ofMtbmalate synthase and advances its validation as a target for drug development.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3