Author:
Rengarajan Sophie,Yankura Kristen A.,Guillermin Manon L.,Fung Wendy,Hallem Elissa A.
Abstract
Hunger affects the behavioral choices of all animals, and many chemosensory stimuli can be either attractive or repulsive depending on an animal’s hunger state. Although hunger-induced behavioral changes are well documented, the molecular and cellular mechanisms by which hunger modulates neural circuit function to generate changes in chemosensory valence are poorly understood. Here, we use the CO2 response of the free-living nematode Caenorhabditis elegans to elucidate how hunger alters valence. We show that CO2 response valence shifts from aversion to attraction during starvation, a change that is mediated by two pairs of interneurons in the CO2 circuit, AIY and RIG. The transition from aversion to attraction is regulated by biogenic amine signaling. Dopamine promotes CO2 repulsion in well-fed animals, whereas octopamine promotes CO2 attraction in starved animals. Biogenic amines also regulate the temporal dynamics of the shift from aversion to attraction such that animals lacking octopamine show a delayed shift to attraction. Biogenic amine signaling regulates CO2 response valence by modulating the CO2-evoked activity of AIY and RIG. Our results illuminate a new role for biogenic amine signaling in regulating chemosensory valence as a function of hunger state.
Funder
HHS | NIH | National Institute of General Medical Sciences
HHS | NIH | National Institute of Neurological Disorders and Stroke
National Science Foundation
McKnight Foundation
Howard Hughes Medical Institute
Publisher
Proceedings of the National Academy of Sciences
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献