The Spiral Wave of Our Galaxy Near Inner Lindblad Resonance

Author:

Mark James W-K.

Abstract

The dispersion relationship for short-wavelength spiral density waves in our Galaxy has been refined to remove the divergences that occurred in wave number and in amplitude as inner Lindblad resonance is approached. The wave is found to be evanescent in an annular region near 4 kpc. By 3 kpc, the inward propagating trailing wave is completely absorbed. The outgoing leading wave is suppressed compared to the trailing one because it begins in the evanescent state. Throughout this region of inner Lindblad resonance, a smooth wave amplitude has been obtained, and it has a sharp peak correlating well with the observed density of ionized hydrogen.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of inner Lindblad resonance on spiral density waves propagation in disc galaxies: reflection over absorption;Monthly Notices of the Royal Astronomical Society;2018-11-03

2. On the Interaction of Spiral Density Waves with Stars near the Inner Lindblad Resonance in Galactic Disks;Astronomy Letters;2018-11

3. Six Decades of Spiral Density Wave Theory;Annual Review of Astronomy and Astrophysics;2016-09-19

4. On the bar formation mechanism in galaxies with cuspy bulges;Monthly Notices of the Royal Astronomical Society;2016-08-04

5. Prominent spiral arms in the gaseous outer galaxy disks;Astronomy and Astrophysics;2010-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3