Cyclic activation of endplate acetylcholine receptors

Author:

Nayak Tapan K.,Auerbach Anthony

Abstract

Agonists turn on receptors because they have a higher affinity for active versus resting conformations of the protein. Activation can occur by either of two pathways that connect to form a cycle: Agonists bind to resting receptors that then become active, or resting receptors activate and then bind agonists. We used mutations to construct endplate acetylcholine receptors (AChRs) having only one functional neurotransmitter-binding site and single-channel electrophysiology to measure independently binding constants for four different agonists, to both resting and active conformations of each site. For all agonists and sites, the total free energy change in each pathway was the same, confirming the activation cycle without external energy. Other results show that (i) there is no cooperativity between sites; (ii) agonist association is slower than diffusion in resting receptors but nearly diffusional in active receptors; (iii) whereas resting affinity is determined mainly by agonist association, active affinity is determined mainly by agonist dissociation; and (iv) at each site and for all agonists, receptor activation approximately doubles the agonist-binding free energy. We discuss a two-step mechanism for binding that involves diffusion and a local conformational change (“catch”) that is modulated by receptor activation. The results suggest that binding to a resting site and the switch to high affinity are both integral parts of a single allosteric transition. We hypothesize that catch ensures proper signal recognition in complex chemical environments and that binding site compaction is a determinant of both resting and active affinity.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3