Abstract
One initial and essential question of magnetism is whether the magnetic properties of a material are governed by localized moments or itinerant electrons. Here, we expose the case for the weakly ferromagnetic system FeGa3−yGey, wherein these two opposite models are reconciled, such that the magnetic susceptibility is quantitatively explained by taking into account the effects of spin–spin correlation. With the electron doping introduced by Ge substitution, the diamagnetic insulating parent compound FeGa3 becomes a paramagnetic metal as early as at y=0.01, and turns into a weakly ferromagnetic metal around the quantum critical point y=0.15. Within the ferromagnetic regime of FeGa3−yGey, the magnetic properties are of a weakly itinerant ferromagnetic nature, located in the intermediate regime between the localized and the itinerant dominance. Our analysis implies a potential universality for all itinerant-electron ferromagnets.
Publisher
Proceedings of the National Academy of Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献