C4 photosynthesis and climate through the lens of optimality

Author:

Zhou HaoranORCID,Helliker Brent R.,Huber Matthew,Dicks Ashley,Akçay ErolORCID

Abstract

CO2, temperature, water availability, and light intensity were all potential selective pressures that determined the competitive advantage and expansion of the C4 photosynthetic carbon-concentrating mechanism over the last ∼30 My. To tease apart how selective pressures varied along the ecological trajectory of C4 expansion and dominance, we coupled hydraulics to photosynthesis models while optimizing photosynthesis over stomatal resistance and leaf/fine-root allocation. We further examined the importance of nitrogen reallocation from the dark to the light reactions. We show here that the primary selective pressures favoring C4 dominance changed through the course of C4 evolution. The higher stomatal resistance and leaf-to-root ratios enabled by C4 led to an advantage without any initial difference in hydraulic properties. We further predict a reorganization of the hydraulic system leading to higher turgor-loss points and possibly lower hydraulic conductance. Selection on nitrogen reallocation varied with CO2 concentration. Through paleoclimate model simulations, we find that water limitation was the primary driver for a C4 advantage, with atmospheric CO2 as high as 600 ppm, thus confirming molecular-based estimates for C4 evolution in the Oligocene. Under these high-CO2 conditions, nitrogen reallocation was necessary. Low CO2 and high light, but not nitrogen reallocation, were the primary drivers for the mid- to late-Miocene global expansion of C4. We also predicted the timing and spatial distribution for origins of C4 ecological dominance. The predicted origins are broadly consistent with prior estimates, but expand upon them to include a center of origin in northwest Africa and a Miocene-long origin in Australia.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3