Noncatalytic aspartate at the exonuclease domain of proofreading DNA polymerases regulates both degradative and synthetic activities

Author:

del Prado Alicia,Franco-Echevarría Elsa,González Beatriz,Blanco Luis,Salas MargaritaORCID,de Vega MiguelORCID

Abstract

Most replicative DNA polymerases (DNAPs) are endowed with a 3′-5′ exonuclease activity to proofread the polymerization errors, governed by four universally conserved aspartate residues belonging to the Exo I, Exo II, and Exo III motifs. These residues coordinate the two metal ions responsible for the hydrolysis of the last phosphodiester bond of the primer strand. Structural alignment of the conserved exonuclease domain of DNAPs from families A, B, and C has allowed us to identify an additional and invariant aspartate, located between motifs Exo II and Exo III. The importance of this aspartate has been assessed by site-directed mutagenesis at the corresponding Asp121 of the family B ϕ29 DNAP. Substitution of this residue by either glutamate or alanine severely impaired the catalytic efficiency of the 3′-5′ exonuclease activity, both on ssDNA and dsDNA. The polymerization activity of these mutants was also affected due to a defective translocation following nucleotide incorporation. Alanine substitution for the homologous Asp90 in family A T7 DNAP showed essentially the same phenotype as ϕ29 DNAP mutant D121A. This functional conservation, together with a close inspection of ϕ29 DNAP/DNA complexes, led us to conclude a pivotal role for this aspartate in orchestrating the network of interactions required during internal proofreading of misinserted nucleotides.

Funder

Ministerio de Economía y Competitividad

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference52 articles.

1. Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3′ leads to 5′ exonuclease activity in deoxyribonucleic acid polymerases;Brutlag;J Biol Chem,1972

2. DNA replication fidelity;Kunkel;J Biol Chem,1992

3. A conserved 3′→5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases

4. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP

5. Cocrystal structure of an editing complex of Klenow fragment with DNA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3