Direct observation of impact propagation and absorption in dense colloidal monolayers

Author:

Buttinoni IvoORCID,Cha Jinwoong,Lin Wei-Hsun,Job Stéphane,Daraio Chiara,Isa LucioORCID

Abstract

Dense colloidal suspensions can propagate and absorb large mechanical stresses, including impacts and shocks. The wave transport stems from the delicate interplay between the spatial arrangement of the structural units and solvent-mediated effects. For dynamic microscopic systems, elastic deformations of the colloids are usually disregarded due to the damping imposed by the surrounding fluid. Here, we study the propagation of localized mechanical pulses in aqueous monolayers of micron-sized particles of controlled microstructure. We generate extreme localized deformation rates by exciting a target particle via pulsed-laser ablation. In crystalline monolayers, stress propagation fronts take place, where fast-moving particles (Vapproximately a few meters per second) are aligned along the symmetry axes of the lattice. Conversely, more viscous solvents and disordered structures lead to faster and isotropic energy absorption. Our results demonstrate the accessibility of a regime where elastic collisions also become relevant for suspensions of microscopic particles, behaving as “billiard balls” in a liquid, in analogy with regular packings of macroscopic spheres. We furthermore quantify the scattering of an impact as a function of the local structural disorder.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Eidgenössische Technische Hochschule Zürich

Agence Nationale de la Recherche

DOD | USAF | AFMC | Air Force Office of Scientific Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometry-controlled phase transition in vibrated granular media;Scientific Reports;2022-09-02

2. Local Plastic Response and Slow Heterogeneous Dynamics of Supercooled Liquids;Physical Review Letters;2022-06-21

3. Wave spectroscopy in a driven granular material;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-06

4. The Manufacture of Unbreakable Bionics via Multifunctional and Self‐Healing Silk–Graphene Hydrogels;Advanced Materials;2021-07-11

5. On the contact law of open-cell poro-granular materials;International Journal of Solids and Structures;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3