Abstract
Motility is a central feature of many microorganisms and provides an efficient strategy to respond to environmental changes. Bacteria and archaea have developed fundamentally different rotary motors enabling their motility, termed flagellum and archaellum, respectively. Bacterial motility along chemical gradients, called chemotaxis, critically relies on the response regulator CheY, which, when phosphorylated, inverses the rotational direction of the flagellum via a switch complex at the base of the motor. The structural difference between archaellum and flagellum and the presence of functional CheY in archaea raises the question of how the CheY protein changed to allow communication with the archaeal motility machinery. Here we show that archaeal CheY shares the overall structure and mechanism of magnesium-dependent phosphorylation with its bacterial counterpart. However, bacterial and archaeal CheY differ in the electrostatic potential of the helix α4. The helix α4 is important in bacteria for interaction with the flagellar switch complex, a structure that is absent in archaea. We demonstrated that phosphorylation-dependent activation, and conserved residues in the archaeal CheY helix α4, are important for interaction with the archaeal-specific adaptor protein CheF. This forms a bridge between the chemotaxis system and the archaeal motility machinery. Conclusively, archaeal CheY proteins conserved the central mechanistic features between bacteria and archaea, but differ in the helix α4 to allow binding to an archaellum-specific interaction partner.
Funder
EC | FP7 | FP7 People: Marie-Curie Actions
EC | FP7 | FP7 Ideas: European Research Council
China Scholarship Council
Hessisches Ministerium für Wissenschaft und Kunst
Deutsche Forschungsgemeinschaft
Publisher
Proceedings of the National Academy of Sciences
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献