Methylglucosylation of aromatic amino and phenolic moieties of drug-like biosynthons by combinatorial biosynthesis

Author:

Xie Linan,Zhang LiwenORCID,Wang Chen,Wang Xiaojing,Xu Ya-ming,Yu Hefen,Wu Ping,Li Shenglan,Han Lida,Gunatilaka A. A. Leslie,Wei Xiaoyi,Lin Min,Molnár IstvánORCID,Xu Yuquan

Abstract

Glycosylation is a prominent strategy to optimize the pharmacokinetic and pharmacodynamic properties of drug-like small-molecule scaffolds by modulating their solubility, stability, bioavailability, and bioactivity. Glycosyltransferases applicable for “sugarcoating” various small-molecule acceptors have been isolated and characterized from plants and bacteria, but remained cryptic from filamentous fungi until recently, despite the frequent use of some fungi for whole-cell biocatalytic glycosylations. Here, we use bioinformatic and genomic tools combined with heterologous expression to identify a glycosyltransferase–methyltransferase (GT–MT) gene pair that encodes a methylglucosylation functional module in the ascomycetous fungus Beauveria bassiana. The GT is the founding member of a family nonorthologous to characterized fungal enzymes. Using combinatorial biosynthetic and biocatalytic platforms, we reveal that this GT is a promiscuous enzyme that efficiently modifies a broad range of drug-like substrates, including polyketides, anthraquinones, flavonoids, and naphthalenes. It yields both O- and N-glucosides with remarkable regio- and stereospecificity, a spectrum not demonstrated for other characterized fungal enzymes. These glucosides are faithfully processed by the dedicated MT to afford 4-O-methylglucosides. The resulting “unnatural products” show increased solubility, while representative polyketide methylglucosides also display increased stability against glycoside hydrolysis. Upon methylglucosidation, specific polyketides were found to attain cancer cell line-specific antiproliferative or matrix attachment inhibitory activities. These findings will guide genome mining for fungal GTs with novel substrate and product specificities, and empower the efficient combinatorial biosynthesis of a broad range of natural and unnatural glycosides in total biosynthetic or biocatalytic formats.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

China Scholarship Council

Joint Genomics Institute of the U.S. Department of Energy

National Institute of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3