Stimulus generalization as a mechanism for learning to trust

Author:

FeldmanHall Oriel,Dunsmoor Joseph E.,Tompary Alexa,Hunter Lindsay E.,Todorov Alexander,Phelps Elizabeth A.

Abstract

How do humans learn to trust unfamiliar others? Decisions in the absence of direct knowledge rely on our ability to generalize from past experiences and are often shaped by the degree of similarity between prior experience and novel situations. Here, we leverage a stimulus generalization framework to examine how perceptual similarity between known individuals and unfamiliar strangers shapes social learning. In a behavioral study, subjects play an iterative trust game with three partners who exhibit highly trustworthy, somewhat trustworthy, or highly untrustworthy behavior. After learning who can be trusted, subjects select new partners for a second game. Unbeknownst to subjects, each potential new partner was parametrically morphed with one of the three original players. Results reveal that subjects prefer to play with strangers who implicitly resemble the original player they previously learned was trustworthy and avoid playing with strangers resembling the untrustworthy player. These decisions to trust or distrust strangers formed a generalization gradient that converged toward baseline as perceptual similarity to the original player diminished. In a second imaging experiment we replicate these behavioral gradients and leverage multivariate pattern similarity analyses to reveal that a tuning profile of activation patterns in the amygdala selectively captures increasing perceptions of untrustworthiness. We additionally observe that within the caudate adaptive choices to trust rely on neural activation patterns similar to those elicited when learning about unrelated, but perceptually familiar, individuals. Together, these findings suggest an associative learning mechanism efficiently deploys moral information encoded from past experiences to guide future choice.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3