Default mode network can support the level of detail in experience during active task states

Author:

Sormaz MladenORCID,Murphy Charlotte,Wang Hao-ting,Hymers Mark,Karapanagiotidis Theodoros,Poerio Giulia,Margulies Daniel S.,Jefferies Elizabeth,Smallwood Jonathan

Abstract

Regions of transmodal cortex, in particular the default mode network (DMN), have historically been argued to serve functions unrelated to task performance, in part because of associations with naturally occurring periods of off-task thought. In contrast, contemporary views of the DMN suggest it plays an integrative role in cognition that emerges from its location at the top of a cortical hierarchy and its relative isolation from systems directly involved in perception and action. The combination of these topographical features may allow the DMN to support abstract representations derived from lower levels in the hierarchy and so reflect the broader cognitive landscape. To investigate these contrasting views of DMN function, we sampled experience as participants performed tasks varying in their working-memory load while inside an fMRI scanner. We used self-report data to establish dimensions of thought that describe levels of detail, the relationship to a task, the modality of thought, and its emotional qualities. We used representational similarity analysis to examine correspondences between patterns of neural activity and each dimension of thought. Our results were inconsistent with a task-negative view of DMN function. Distinctions between on- and off-task thought were associated with patterns of consistent neural activity in regions adjacent to unimodal cortex, including motor and premotor cortex. Detail in ongoing thought was associated with patterns of activity within the DMN during periods of working-memory maintenance. These results demonstrate a contribution of the DMN to ongoing cognition extending beyond task-unrelated processing that can include detailed experiences occurring under active task conditions.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3