Nematic twist–bend phase in an external field

Author:

Pająk Grzegorz,Longa Lech,Chrzanowska Agnieszka

Abstract

The response of the nematic twist–bend (NTB) phase to an applied field can provide important insight into the structure of this liquid and may bring us closer to understanding mechanisms generating mirror symmetry breaking in a fluid of achiral molecules. Here we investigate theoretically how an external uniform field can affect structural properties and the stability of NTB. Assuming that the driving force responsible for the formation of this phase is packing entropy, we show, within Landau–de Gennes theory, that NTB can undergo a rich sequence of structural changes with the field. For the systems with positive anisotropy of permittivity, we first observe a decrease of the tilt angle of NTB until it transforms through a field-induced phase transition to the ordinary prolate uniaxial nematic phase (N). Then, at very high fields, this nematic phase develops polarization perpendicular to the field (Np+). For systems with negative anisotropy of permittivity, the results reveal new modulated structures. Even an infinitesimally small field transforms NTB to its elliptical counterpart (NTBe), where the circular base of the cone of the main director becomes elliptic. With stronger fields, the ellipse degenerates to a line, giving rise to a nonchiral periodic structure, the nematic splay–bend (NSB), where the two nematic directors are restricted to a plane. The three structures—NTB, NTBe, and NSB—with a modulated polar order are globally nonpolar. But further increase of the field induces phase transitions into globally polar structures with nonvanishing polarization along the field’s direction. We found two such structures, one of which is a polar and chiral modification of NSB, where splay and bend deformations are accompanied by weak twist deformations (NSB*p). Further increase of the field unwinds this structure into a polar nematic (Np) of polarization parallel to the field.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3