Higher-rank zeta functions for elliptic curves

Author:

Weng Lin,Zagier Don

Abstract

In earlier work by L.W., a nonabelian zeta function was defined for any smooth curve X over a finite fieldFqand any integern1bywhere the sum is over isomorphism classes ofFq-rational semistable vector bundles V of rank n on X with degree divisible by n. This function, which agrees with the usual Artin zeta function ofX/Fqifn=1, is a rational function ofqswith denominator(1qns)(1qnns)and conjecturally satisfies the Riemann hypothesis. In this paper we study the case of genus 1 curves in detail. We show that in that case the Dirichlet serieswhere the sum is now over isomorphism classes ofFq-rational semistable vector bundles V of degree 0 on X, is equal tok=1ζX/Fq(s+k),and use this fact to prove the Riemann hypothesis forζX,n(s)for all n.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference11 articles.

1. Non-abelian zeta function for function fields;Weng;Am. J. Math.,2005

2. L. Weng , Zeta functions for curves over finite fields. arXiv:1202.3183 (15 February 2012).

3. On the cohomology groups of moduli spaces of vector bundles on curves;Harder;Math. Ann.,1975

4. Higher-rank zeta functions andSLn-zeta functions for curves

5. Symmetries and the Riemann hypothesis;Weng,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Higher-rank zeta functions andSLn-zeta functions for curves;Proceedings of the National Academy of Sciences;2020-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3