TheTMEM189gene encodes plasmanylethanolamine desaturase which introduces the characteristic vinyl ether double bond into plasmalogens

Author:

Werner Ernst R.ORCID,Keller Markus A.ORCID,Sailer SabrinaORCID,Lackner KatharinaORCID,Koch JakobORCID,Hermann Martin,Coassin Stefan,Golderer Georg,Werner-Felmayer Gabriele,Zoeller Raphael A.ORCID,Hulo Nicolas,Berger JohannesORCID,Watschinger KatrinORCID

Abstract

A significant fraction of the glycerophospholipids in the human body is composed of plasmalogens, particularly in the brain, cardiac, and immune cell membranes. A decline in these lipids has been observed in such diseases as Alzheimer’s and chronic obstructive pulmonary disease. Plasmalogens contain a characteristic 1-O-alk-1′-enyl ether (vinyl ether) double bond that confers special biophysical, biochemical, and chemical properties to these lipids. However, the genetics of their biosynthesis is not fully understood, since no gene has been identified that encodes plasmanylethanolamine desaturase (E.C. 1.14.99.19), the enzyme introducing the crucial alk-1′-enyl ether double bond. The present work identifies this gene as transmembrane protein 189 (TMEM189). Inactivation of theTMEM189gene in human HAP1 cells led to a total loss of plasmanylethanolamine desaturase activity, strongly decreased plasmalogen levels, and accumulation of plasmanylethanolamine substrates and resulted in an inability of these cells to form labeled plasmalogens from labeled alkylglycerols. Transient expression of TMEM189 protein, but not of other selected desaturases, recovered this deficit. TMEM189 proteins contain a conserved protein motif (pfam10520) with eight conserved histidines that is shared by an alternative type of plant desaturase but not by other mammalian proteins. Each of these histidines is essential for plasmanylethanolamine desaturase activity. Mice homozygous for an inactivatedTmem189gene lacked plasmanylethanolamine desaturase activity and had dramatically lowered plasmalogen levels in their tissues. These results assign theTMEM189gene to plasmanylethanolamine desaturase and suggest that the previously characterized phenotype ofTmem189-deficient mice may be caused by a lack of plasmalogens.

Funder

Austrian Science Fund

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3