A tractable latent variable model for nonlinear dimensionality reduction

Author:

Saul Lawrence K.

Abstract

We propose a latent variable model to discover faithful low-dimensional representations of high-dimensional data. The model computes a low-dimensional embedding that aims to preserve neighborhood relationships encoded by a sparse graph. The model both leverages and extends current leading approaches to this problem. Like t-distributed Stochastic Neighborhood Embedding, the model can produce two- and three-dimensional embeddings for visualization, but it can also learn higher-dimensional embeddings for other uses. Like LargeVis and Uniform Manifold Approximation and Projection, the model produces embeddings by balancing two goals—pulling nearby examples closer together and pushing distant examples further apart. Unlike these approaches, however, the latent variables in our model provide additional structure that can be exploited for learning. We derive an Expectation–Maximization procedure with closed-form updates that monotonically improve the model’s likelihood: In this procedure, embeddings are iteratively adapted by solving sparse, diagonally dominant systems of linear equations that arise from a discrete graph Laplacian. For large problems, we also develop an approximate coarse-graining procedure that avoids the need for negative sampling of nonadjacent nodes in the graph. We demonstrate the model’s effectiveness on datasets of images and text.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust discriminant latent variable manifold learning for rotating machinery fault diagnosis;Engineering Applications of Artificial Intelligence;2023-11

2. Visualization and Visual Analytics Approaches for Image and Video Datasets: A Survey;ACM Transactions on Interactive Intelligent Systems;2023-03-09

3. Summarizing Data Structures with Gaussian Process and Robust Neighborhood Preservation;Machine Learning and Knowledge Discovery in Databases;2023

4. Optimal Axes for Data Value Estimation in Star Coordinates and Radial Axes Plots;Computer Graphics Forum;2021-06

5. Minimum-Distortion Embedding;Foundations and Trends® in Machine Learning;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3