Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells

Author:

Belling Jason N.ORCID,Heidenreich Liv K.ORCID,Tian ZhenhuaORCID,Mendoza Alexandra M.ORCID,Chiou Tzu-TingORCID,Gong YaoORCID,Chen Natalie Y.ORCID,Young Thomas D.ORCID,Wattanatorn NatchaORCID,Park Jae HyeonORCID,Scarabelli LeonardoORCID,Chiang NaihaoORCID,Takahashi JackORCID,Young Stephen G.ORCID,Stieg Adam Z.ORCID,De Oliveira SatiroORCID,Huang Tony JunORCID,Weiss Paul S.ORCID,Jonas Steven J.ORCID

Abstract

Advances in gene editing are leading to new medical interventions where patients’ own cells are used for stem cell therapies and immunotherapies. One of the key limitations to translating these treatments to the clinic is the need for scalable technologies for engineering cells efficiently and safely. Toward this goal, microfluidic strategies to induce membrane pores and permeability have emerged as promising techniques to deliver biomolecular cargo into cells. As these technologies continue to mature, there is a need to achieve efficient, safe, nontoxic, fast, and economical processing of clinically relevant cell types. We demonstrate an acoustofluidic sonoporation method to deliver plasmids to immortalized and primary human cell types, based on pore formation and permeabilization of cell membranes with acoustic waves. This acoustofluidic-mediated approach achieves fast and efficient intracellular delivery of an enhanced green fluorescent protein-expressing plasmid to cells at a scalable throughput of 200,000 cells/min in a single channel. Analyses of intracellular delivery and nuclear membrane rupture revealed mechanisms underlying acoustofluidic delivery and successful gene expression. Our studies show that acoustofluidic technologies are promising platforms for gene delivery and a useful tool for investigating membrane repair.

Funder

HHS | National Institutes of Health

HHS | NIH | National Heart, Lung, and Blood Institute

HHS | NIH | National Cancer Institute

American Society for Hematology

American Itialian Cancer Foundation

UCLA Department of Chemistry

UCLA Innovation Fund

UCLA David Geffen School of Medicine

Alex's Lemonade Stand Foundation for Childhood Cancer

Hyundai Motor Group | Hyundai Motor America | Hyundai Hope On Wheels

Tower Cancer Research Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3