Improved protein structure prediction using predicted interresidue orientations

Author:

Yang JianyiORCID,Anishchenko IvanORCID,Park Hahnbeom,Peng Zhenling,Ovchinnikov Sergey,Baker DavidORCID

Abstract

The prediction of interresidue contacts and distances from coevolutionary data using deep learning has considerably advanced protein structure prediction. Here, we build on these advances by developing a deep residual network for predicting interresidue orientations, in addition to distances, and a Rosetta-constrained energy-minimization protocol for rapidly and accurately generating structure models guided by these restraints. In benchmark tests on 13th Community-Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP13)- and Continuous Automated Model Evaluation (CAMEO)-derived sets, the method outperforms all previously described structure-prediction methods. Although trained entirely on native proteins, the network consistently assigns higher probability to de novo-designed proteins, identifying the key fold-determining residues and providing an independent quantitative measure of the “ideality” of a protein structure. The method promises to be useful for a broad range of protein structure prediction and design problems.

Funder

National Natural Science Foundation of China

Fok Ying Tong Education Foundation

HHS | NIH | National Institute of General Medical Sciences

Office of the Director of National Institute of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3