Spatial domain organization in the HIV-1 reverse transcriptase p66 homodimer precursor probed by double electron-electron resonance EPR

Author:

Schmidt Thomas,Schwieters Charles D.,Clore G. Marius

Abstract

HIV type I (HIV-1) reverse transcriptase (RT) catalyzes the conversion of viral RNA into DNA, initiating the chain of events leading to integration of proviral DNA into the host genome. RT is expressed as a single polypeptide chain within the Gag-Pol polyprotein, and either prior to or following excision by HIV-1 protease forms a 66 kDa chain (p66) homodimer precursor. Further proteolytic attack by HIV-1 protease cleaves the ribonuclease H (RNase H) domain of a single subunit to yield the mature p66/p51 heterodimer. Here, we probe the spatial domain organization within the p66 homodimer using pulsed Q-band double electron-electron resonance (DEER) EPR spectroscopy to measure a large number of intra- and intersubunit distances between spin labels attached to surface-engineered cysteines. The DEER-derived distances are fully consistent with the structural subunit asymmetry found in the mature p66/p51 heterodimer in which catalytic activity resides in the p66 subunit, while the p51 subunit purely serves as a structural scaffold. Furthermore, the p66 homodimer precursor undergoes a conformational change involving the thumb, palm, and finger domains in one of the subunits (corresponding to the p66 subunit in the mature p66/p51 heterodimer) from a closed to a partially open state upon addition of a nonnucleoside inhibitor. The relative orientation of the domains was modeled by simulated annealing driven by the DEER-derived distances. Finally, the RNase H domain that is cleaved to generate p51 in the mature p66/p51 heterodimer is present in 2 major conformers. One conformer is fully solvent accessible thereby accounting for the observation that only a single subunit of the p66 homodimer precursor is susceptible to HIV-1 protease.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

HHS | NIH | Office of AIDS Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3