Inverted-region electron transfer as a mechanism for enhancing photosynthetic solar energy conversion efficiency

Author:

Makita Hiroki,Hastings Gary

Abstract

In all photosynthetic organisms, light energy is used to drive electrons from a donor chlorophyll species via a series of acceptors across a biological membrane. These light-induced electron-transfer processes display a remarkably high quantum efficiency, indicating a near-complete inhibition of unproductive charge recombination reactions. It has been suggested that unproductive charge recombination could be inhibited if the reaction occurs in the so-called inverted region. However, inverted-region electron transfer has never been demonstrated in any native photosynthetic system. Here we demonstrate that the unproductive charge recombination in native photosystem I photosynthetic reaction centers does occur in the inverted region, at both room and cryogenic temperatures. Computational modeling of light-induced electron-transfer processes in photosystem I demonstrate a marked decrease in photosynthetic quantum efficiency, from 98% to below 72%, if the unproductive charge recombination process does not occur in the inverted region. Inverted-region electron transfer is therefore demonstrated to be an important mechanism contributing to efficient solar energy conversion in photosystem I. Inverted-region electron transfer does not appear to be an important mechanism in other photosystems; it is likely because of the highly reducing nature of photosystem I, and the energetic requirements placed on the pigments to operate in such a regime, that the inverted-region electron transfer mechanism becomes important.

Funder

Qatar National Research Fund

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3