Abstract
For decades, scientists have debated whether supercooled liquids stop flowing below a glass transition temperatureTg0or whether motion continues to slow gradually down to zero temperature. Answering this question is challenging because human time scales set a limit on the largest measurable viscosity, and available data are equally well fit to models with opposite conclusions. Here, we use short simulations to determine the nonequilibrium shear response of a typical glass-former, squalane. Fits of the data to an Eyring model allow us to extrapolate predictions for the equilibrium Newtonian viscosityηNover a range of pressures and temperatures that changeηNby 25 orders of magnitude. The results agree with the unusually large set of equilibrium and nonequilibrium experiments on squalane and extend them to higherηN. Studies at different pressures and temperatures are inconsistent with a diverging viscosity at finite temperature. At all pressures, the predicted viscosity becomes Arrhenius with a single temperature-independent activation barrier at low temperatures and high viscosities (ηN>103Pa⋅s). Possible experimental tests of our results are outlined.
Funder
DOD |U.S. Army | AMC |U.S. Army Research Laboratory
Publisher
Proceedings of the National Academy of Sciences
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献