Optimal multivalent targeting of membranes with many distinct receptors

Author:

Curk Tine,Dobnikar Jure,Frenkel DaanORCID

Abstract

Cells can often be recognized by the concentrations of receptors expressed on their surface. For better (targeted drug treatment) or worse (targeted infection by pathogens), it is clearly important to be able to target cells selectively. A good targeting strategy would result in strong binding to cells with the desired receptor profile and barely binding to other cells. Using a simple model, we formulate optimal design rules for multivalent particles that allow them to distinguish target cells based on their receptor profile. We find the following: (i) It is not a good idea to aim for very strong binding between the individual ligands on the guest (delivery vehicle) and the receptors on the host (cell). Rather, one should exploit multivalency: High sensitivity to the receptor density on the host can be achieved by coating the guest with many ligands that bind only weakly to the receptors on the cell surface. (ii) The concentration profile of the ligands on the guest should closely match the composition of the cognate membrane receptors on the target surface. And (iii) irrespective of all details, the effective strength of the ligand–receptor interaction should be of the order of the thermal energy kBT, where T is the absolute temperature and kB is Boltzmann’s constant. We present simulations that support the theoretical predictions. We speculate that, using the above design rules, it should be possible to achieve targeted drug delivery with a greatly reduced incidence of side effects.

Funder

Seventh Framework Programme

Herchel Smith Funf

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3