Escherichia colicultures maintain stable subpopulation structure during long-term evolution

Author:

Behringer Megan G.,Choi Brian I.,Miller Samuel F.,Doak Thomas G.,Karty Jonathan A.,Guo Wanfeng,Lynch Michael

Abstract

How genetic variation is generated and maintained remains a central question in evolutionary biology. When presented with a complex environment, microbes can take advantage of genetic variation to exploit new niches. Here we present a massively parallel experiment where WT and repair-deficient (∆mutL)Escherichia colipopulations have evolved over 3 y in a spatially heterogeneous and nutritionally complex environment. Metagenomic sequencing revealed that these initially isogenic populations evolved and maintained stable subpopulation structure in just 10 mL of medium for up to 10,000 generations, consisting of up to five major haplotypes with many minor haplotypes. We characterized the genomic, transcriptomic, exometabolomic, and phenotypic differences between clonal isolates, revealing subpopulation structure driven primarily by spatial segregation followed by differential utilization of nutrients. In addition to genes regulating the import and catabolism of nutrients, major polymorphisms of note included insertion elements transposing intofimE(regulator of the type I fimbriae) and upstream ofhns(global regulator of environmental-change and stress-response genes), both known to regulate biofilm formation. Interestingly, these genes have also been identified as critical to colonization in uropathogenicE. coliinfections. Our findings illustrate the complexity that can arise and persist even in small cultures, raising the possibility that infections may often be promoted by an evolving and complex pathogen population.

Funder

HHS | NIH | National Institute of General Medical Sciences

DOD | United States Army | RDECOM | Army Research Office

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3