Seismic constraints and geodynamic implications of differential lithosphere-asthenosphere flow revealed in East Asia

Author:

Wu Shanshan123,Guo Zhen1,Chen Yongshun John1,Morgan Jason P.1ORCID

Affiliation:

1. Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

2. Shanghai Sheshan National Geophysical Observatory and Research Station, Shanghai 201602, China

3. Shanghai Earthquake Administration, Shanghai 200062, China

Abstract

During the last 50 Ma, the East Asian continent has been a zone of massive continental collision and lithospheric deformation. While the consequences of this for Asian surface and lithospheric deformation have been intensively studied over the past 4 decades, the relationships between lithospheric deformation and underlying asthenospheric flow have been more difficult to constrain. Here we present a high resolution 3-D azimuthal anisotropy model for the northeastern Tibetan Plateau and its eastward continuation based on surface-wave tomography and shear-wave splitting measurements. This model shows that eastward lateral flow of asthenosphere beneath the northeastern Tibetan Plateau is being blocked by thick Ordos and Sichuan cratonic keels. The damming effect of these keels induces flow to first rotate around the Ordos keel and then transition into strong east-west flow beneath the thinner lithosphere that forms the lithospheric suture between the two cratonic keels. We further find that asthenosphere flow directions can differ from those of overlying lithosphere, with the asthenosphere neither being passively dragged by overlying lithosphere, nor being able to drag the overlying plate to mimic its subsurface flow. Finally, the region of eastward-channeled asthenospheric flow from Tibet underlies a belt of stronger intracontinental deformation in eastern China.

Funder

National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3