A photo-switchable assay system for dendrite degeneration and repair in Drosophila melanogaster

Author:

Liu Han-Hsuan123,Hsu Chien-Hsiang4,Jan Lily Y.123ORCID,Jan Yuh-Nung123ORCID

Affiliation:

1. Department of Physiology, University of California, San Francisco, CA 94143

2. Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143

3. HHMI, University of California, San Francisco, CA 94143

4. Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143

Abstract

Neurodegeneration arising from aging, injury, or diseases has devastating health consequences. Whereas neuronal survival and axon degeneration have been studied extensively, much less is known about how neurodegeneration affects dendrites, in part due to the limited assay systems available. To develop an assay for dendrite degeneration and repair, we used photo-switchable caspase-3 (caspase-Light–Oxygen–Voltage-sensing [caspase-LOV]) in peripheral class 4 dendrite arborization (c4da) neurons to induce graded neurodegeneration by adjusting illumination duration during development and adulthood in Drosophila melanogaster . We found that both developing and mature c4da neurons were able to survive while sustaining mild neurodegeneration induced by moderate caspase-LOV activation. Further, we observed active dendrite addition and dendrite regeneration in developing and mature c4da neurons, respectively. Using this assay, we found that the mouse Wallerian degeneration slow (Wld S ) protein can protect c4da neurons from caspase-LOV–induced dendrite degeneration and cell death. Furthermore, our data show that Wld S can reduce dendrite elimination without affecting dendrite addition. In summary, we successfully established a photo-switchable assay system in both developing and mature neurons and used Wld S as a test case to study the mechanisms underlying dendrite regeneration and repair.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

Howard Hughes Medical Institute

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3