Real-time resolution of point mutations that cause phenovariance in mice

Author:

Wang Tao,Zhan Xiaowei,Bu Chun-Hui,Lyon Stephen,Pratt David,Hildebrand Sara,Choi Jin Huk,Zhang Zhao,Zeng Ming,Wang Kuan-wen,Turer Emre,Chen Zhe,Zhang Duanwu,Yue Tao,Wang Ying,Shi Hexin,Wang Jianhui,Sun Lei,SoRelle Jeff,McAlpine William,Hutchins Noelle,Zhan Xiaoming,Fina Maggy,Gobert Rochelle,Quan Jiexia,Kreutzer McKensie,Arnett Stephanie,Hawkins Kimberly,Leach Ashley,Tate Christopher,Daniel Chad,Reyna Carlos,Prince Lauren,Davis Sheila,Purrington Joel,Bearden Rick,Weatherly Jennifer,White Danielle,Russell Jamie,Sun Qihua,Tang Miao,Li Xiaohong,Scott Lindsay,Moresco Eva Marie Y.,McInerney Gerald M.,Karlsson Hedestam Gunilla B.,Xie Yang,Beutler Bruce

Abstract

With the wide availability of massively parallel sequencing technologies, genetic mapping has become the rate limiting step in mammalian forward genetics. Here we introduce a method for real-time identification of N-ethyl-N-nitrosourea-induced mutations that cause phenotypes in mice. All mutations are identified by whole exome G1 progenitor sequencing and their zygosity is established in G2/G3 mice before phenotypic assessment. Quantitative and qualitative traits, including lethal effects, in single or multiple combined pedigrees are then analyzed with Linkage Analyzer, a software program that detects significant linkage between individual mutations and aberrant phenotypic scores and presents processed data as Manhattan plots. As multiple alleles of genes are acquired through mutagenesis, pooled “superpedigrees” are created to analyze the effects. Our method is distinguished from conventional forward genetic methods because it permits (1) unbiased declaration of mappable phenotypes, including those that are incompletely penetrant (2), automated identification of causative mutations concurrent with phenotypic screening, without the need to outcross mutant mice to another strain and backcross them, and (3) exclusion of genes not involved in phenotypes of interest. We validated our approach and Linkage Analyzer for the identification of 47 mutations in 45 previously known genes causative for adaptive immune phenotypes; our analysis also implicated 474 genes not previously associated with immune function. The method described here permits forward genetic analysis in mice, limited only by the rates of mutant production and screening.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3