Using wavelength and slope to infer the historical origin of semiarid vegetation bands

Author:

Sherratt Jonathan A.

Abstract

Landscape-scale patterns of vegetation occur worldwide at interfaces between semiarid and arid climates. They are important as potential indicators of climate change and imminent regime shifts and are widely thought to arise from positive feedback between vegetation and infiltration of rainwater. On gentle slopes the typical pattern form is bands (stripes), oriented parallel to the contours, and their wavelength is probably the most accessible statistic for vegetation patterns. Recent field studies have found an inverse correlation between pattern wavelength and slope, in apparent contradiction with the predictions of mathematical models. Here I show that this “contradiction” is based on a flawed approach to calculating the wavelength in models. When pattern generation is considered in detail, the theory is fully consistent with empirical results. For realistic parameters, degradation of uniform vegetation generates patterns whose wavelength increases with slope, whereas colonization of bare ground gives the opposite trend. Therefore, the empirical finding of an inverse relationship can be used, in conjunction with climate records, to infer the historical origin of the patterns. Specifically, for the African Sahel my results suggest that banded vegetation originated by the colonization of bare ground during circa 1760–1790 or since circa 1850.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3