Author:
Ariss Anass,Ennejjai Imane,Mabrouki Jamal,Lamjid Asmaa,Kharmoum Nassim,Ziti Soumia
Abstract
This paper presents a theoretical framework for a tracking system, wherein we generalize the formulation of a tracking system de- signed for living beings and objects. Many tracking systems are typically developed within specific frameworks, either for tracking in limited or unlimited space. The latter often relies on technical tools dedicated to tracking living beings or objects. In this study, we propose a system theory that formulates the task of tracking both living beings and ob- jects. Graphical modeling is widely employed in tracking to establish correct connections between the elements to be tracked and other com- ponents in the system. However, basing a tracking system on graphs in both its theoretical and practical aspects remains the optimal method for achieving a high-performing, relevant, and adaptable system in vari- ous situations. This paper introduces a tracking system based on graph learning and hypergraphs, fully leveraging direct and indirect relations while considering the order between multiple system links. Tracking is thus formulated as a search problem on graphs and hypergraphs, with vertices representing the elements of the system (living beings or ob- jects), and edges representing the types of connections between these elements. We define a law governing the relationships between the ver- tices, managing the shared data between the elements of the system and other processes. Furthermore, examples of single and multi-context track- ing situations demonstrate that the proposed system, in its theoretical foundation, outperforms existing systems.
Publisher
Salud, Ciencia y Tecnologia
Reference109 articles.
1. 1. K. Okuma, A. Taleghani, N. De Freitas, J. J. Little, and D. G. Lowe. A boosted particle filter: Multitarget detection and tracking. In Computer Vision-ECCV 2004, pages 28–39. Springer, 2004.
2. 2. B. Leibe, K. Schindler, N. Cornelis, and L. Van Gool. Coupled ob- ject detection and tracking from static cameras and moving vehi- cles. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(10):1683–1698, 2008.
3. 3. A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
4. S. Savarese. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 961–971, 2016.
5. 4. C. Huang, B. Wu, and R. Nevatia. Robust object tracking by hierarchical association of detection responses. In Computer Vi- sion–ECCV 2008, pages 788–801. Springer, 2008.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献