Tartaric acid new derivatives as prospective and safe alternative to antimicrobials for food products packing

Author:

Mikaelyan Aram R.,Babayan Bella G.,Grigoryan Armen L.,Grigoryan Anna M.,Asatryan Nona L.,Melkumyan Marina A.

Abstract

Introduction: Multi-drug resistance of pathogens and food spoilage bacteria is one of the most prevalent problems in contemporary science because the microbial adaptation potential is permanently being stimulated by the excessive antibiotic usage by mankind. In this research, seven new derivatives of tartaric acid (TA) were studied. Their high activity against the multi-drug resistant bacteria and the biodegradation potential by soil microflora was demonstrated.Objective: Based on multiple literature data about aldaric acids antimicrobial properties, for combating pan-drug and especially multi-drug resistant pathogenic microbes,  natural L-tartaric acid was target-derivatized by cyclohexyl-, phenyl-, benzyl- and ethanolamine- functional groups into complex amino salts and cyclic imides, which have demonstrated the significant bactericidal and bacteriostatic activity against the spoilage agent bacteria, as well as phytopathogenic and human opportunistic pathogens.Results: In vitro analyses of TA ethanolamine- benzyl-, cyclohexyl- and phenyl- imides and complex amino salts have shown that the mentioned substances are highly active agents for combating multi-drug resistant Gram-positive and Gram-negative pathogens and food spoilage microbes, such as: Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Klebsiella pneumonia, Salmonella enteritidis, Staphylococcus aureus, etc. These compounds are biodegradable by P. chlororaphis group non-pathogenic bacteria and their resistance is ensured by genes of nucleoid as well as are not transmitted by plasmids. In silico analyses have demonstrated their alternative mechanism of action. Conclusions: The results suggest that TA new derivatives can be potentially recommended as safe alternative antimicrobials for food packaging.Keywords: tartaric acid imides, tartaric acid complex aminosalts, spoilage microorganisms, antimicrobial activity, multi-drug resistance. 

Publisher

Functional Food Center

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3