Optimization of diagnostic processes using decision trees in ECG data analysis - lets web system analysis engine

Author:

Jarosz MiroslawORCID,Kowalski MarcinORCID,Przysucha BartoszORCID

Abstract

The article presents the capabilities of the LETS Web system, which uses Internet of Things (IoT) technology to analyze medical data to optimize diagnostic processes. The article focuses on implementing decision tree algorithms that analyze electrocardiogram (ECG) data to identify cardiac conditions. The study used three variants of decision trees that differed in structure and ECG parameters. Each variant was tested for its ability to accurately classify cardiac health conditions ranging from simple arrhythmias to complex arrhythmic changes. The study showed that modifications to the structure of the decision trees significantly affected their effectiveness. The most advanced variant of the tree, using multivariate data analysis, showed the highest efficiency in diagnosing complex conditions. The effectiveness of the different variants of decision trees varied, confirming the importance of selecting the suitable diagnostic model for the specifics of the data and clinical goals.

Publisher

Akademia Nauk Stosowanych WSGE im. A. De Gasperi w Józefowie

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3