A machine learning based approach for prediction and interpretation of soil properties from soil spectral data

Author:

,Divya A.,Josphineleela R., ,Jaba Sheela L.ORCID,

Abstract

Aim: An active agricultural sector depends on good soil quality, essential for sustained food cultivation. However, intensive farming and rising demand can lead to soil deterioration, affecting crop yields. Smart soil prediction driven by machine learning is crucial for precision farming and efficient nutrient distribution. Methodology: Visible-near infrared Spectroscopy (vis-NIRS) is used to capture the soil's spectral data.Then, the spectral data is preprocessed with Savitzky-Golay Smoothing.The data that has been preprocessed is then used to train the machine learning model.The preprocessed data enhances model performance compared to spectral reflectance data in its unprocessed state.The machine learning model acquires data-based knowledge, identifies patterns, and predicts soil quality parameters. The Random Forest and Gradient Boosted Regression Tree are two algorithms employed in this study. Results: The spectral reflectance data is used to train, validate, and evaluate the machine learning model.In determining soil properties, both algorithms demonstrated a high degree of prediction accuracy, as demonstrated by the results.Gradient Boosted Regression Tree out performs Random Forest, but is expensive and requires sequential data. Random forest algorithm works well with large datasets, but over-fitting issues arise in some instances. Interpretation: The findings of the study indicate that machine learning can automate the current soil testing procedure in laboratories, thereby making it more efficient, affordable, and environmentally friendly. Key words: Gradient Boosted Regression Tree, Machine learning, Random forest, Soil fertility, Soil moisture

Publisher

Triveni Enterprises

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3