Degradation of PET Nanoplastic Oligomers at the Novel PHL7 Target:Insights from Molecular Docking and Machine Learning

Author:

Duru Chidi,Enyoh Christian,Duru Ijeoma Akunna,Enedoh Margaret Chinyelu

Abstract

The versatility of Polyethylene terephthalate (PET) as a material with numerous applications in the food industry and its recalcitrance to chemical and microbial degradation has recently made it an environmental nuisance. In this study, we applied computational methods to ascertain the dependence of PET nanoplastic (NP) degradation on the chain length of the oligomer. The binding affinities of the NPs on the novel enzyme Polyester Hydrolase Leipzig 7 (PHL7) were used to relate their ease of degradation at the enzyme active site. The results revealed that the binding affinity of PET NPs at the enzyme target decreased from -5.2 kcal/mol to -0.8 kcal/mol, with an increase in PET chain length from 2.18 nm to 5.45 nm (2-5 PET chains). The binding affinities became positive at chain lengths 6.54 nm (6 PET chains) and above. These findings indicated that PET NP degradation at this enzyme’s active site is most efficient as chain length decreases from 5-2 units and is not likely to occur at longer PET chains. A feedforward Artificial Neutral Network (ANN) analysis predicted that the energy of the PET NPs is a very important factor in its degradation.

Publisher

Nigerian Society of Physical Sciences

Subject

General Physics and Astronomy,General Mathematics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3