Modelling and Forecasting Climate Time Series with State-Space Model

Author:

Adedotun A. F.,Latunde T.,Odusanya O. A.

Abstract

This study modelled and estimated climatic data using the state-space model. The study was specifically to identify the pattern of the trend movement i.e., increase or decrease in the occurrence of the climatic change; to use of Univariate Kalman Filter for the computation of the likelihood function for climatic projections; to modelling the climatic dataset using the state-space model and to assess the forecasting power of the state-space models. The data used for the work includes temperature and rainfall for periods January 1991 to December 2017. The data are tested for normality. Shapiro-Wilk, Anderson-Darling and Kolmogorov-Smirnov test of normality for the climatic data all showed that the variables are not normally distributed. The work spans the use of breaking trend regression model to fit climatic data to estimate the slopes which show much increase in climatic data has been recorded from the initial time data collection until the present. Investigations and diagnostic are carried out by checking for corrections in the residuals and also checking for periodicity in the residuals. The results of this investigation show significant autocorrelation in the residuals indicating the presence of underlying noise terms which is not accounted for. By treating the residual as an autoregressive moving average (ARMA) process whereby we can obtain its spectral density, the result from the parametric spectral estimate shows underlying periodic patterns for monthly data, thus, leads to a discussion on the need to treat climatic data as a structural time series model. We select appropriate models by considering the goodness of fit of the model by comparing the Akaike information criterion (AIC) values. Parameters are estimated and accomplished with some measures of precision.

Publisher

Nigerian Society of Physical Sciences

Reference11 articles.

1. S. Makridakis & M.Hibon, “The M3-Competition: results, conclusions and implications”, International Journal of Forecasting 16 (2000), 451.

2. B. Shamshad, M. Z Khan & Z. Omar, “Modeling and forecasting weather parameters using ANN-MLP, ARIMA and ETS model: a case study for Lahore, Pakistan”, Journal of Applied Statistics 5 (2019) 388.

3. S. Afsar, N. Abbas,& B.Jan, “Comparative study of temperature and rainfall fluctuation in Hunza-Nagar District”, Journal of Basic and Applied Sciences 9 (2013) 151.

4. N. Faisal & A. Ghaffar, “Development of Pakistan’s new area weighted rainfall using Thiessen polygon method”, Pakistan Journal of Metrology 17 (2012) 107.

5. F. Yusof, I. L. Kane & Z. Yusop, “Structural break or long memory: An empirical survey on daily rainfall data sets across Malaysia”, Hydrology and Earth System Sciences 17 (2013) 1311.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3