Validation of Near InfraRed preconcentration strategies for ore sorting

Author:

Iyakwari S.,Glass H. J.,Rollinson G. K.,Umbugadu A. A.,Opaluwa O. D.,Frankie B. O.

Abstract

The early rejection of gangue minerals, at coarse ore particles size (preconcentration), has been shown to be a viable option to cost reduction in many mineral processing applications. A promising technique being explored for efficient ore preconcentration is the Near InfraRed (NIR) spectroscopy. This paper attempts to validate the efficiency of near infrared preconcentration strategies, by comparing data of preconcentrated particles, when particles are scanned using near line scanner from different sides and angle of view. Three copper particles were selected from a batch of sixty preconcentrated samples, mineralogical and near infrared analysis were performed on the particles. Particles were then cut laterally (cross sectioned) and mineralogical and near infrared analysis repeated on the cut cross sectioned surface. Data of the whole samples and cross-sectioned samples are compared. Results indicate that the depth attained by scanning (both with NIR and QEMSCAN(R) of original samples is representative of each sample scanned and sufficient for preconcentration. Also, except for the differences in particle size, correlation is almost 1:1, thus, validating the initial NIR preconcentration results as being promising.

Publisher

Nigerian Society of Physical Sciences

Subject

General Physics and Astronomy,General Mathematics,General Chemistry

Reference20 articles.

1. B. A. Wills, & T. Napier-Munn, “Mineral processing technology. An introduction to the practical; aspects of ore treatment and mineral”, 7th edition Elsevier Sci. & Tech. Book. (2006) ISBN: 0750644508.

2. B. A. Wills, “Mineral Processing Technology”, Burlington MA, Butterworth-Heinemann (1997).

3. P. Gottlieb, G. Wilkie, D. Sutherland, E. Ho-Tun, S. Suthers, K. Perera, B. Jenkins S. Spencer, A. Butcher,. & J. Rayner, “Using quantitative electron microscopy for process mineralogy applications”, JOM 52 (2000) 24.

4. S. Iyakwari, H.J., Glass, & S.E. Obrike.. Discerning mineral association in the near infrared region for ore sorting. Int. J Miner Process 166 (2017) 24.

5. B. Curtis, “Developing automated copper ore processing using NIR analysis and XRD”, Adv. Mater. Proc. 170 (2012) 24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3