An Energy-Efficient Learning Automata and Cluster-Based Routing Algorithm for Wireless Sensor Networks

Author:

Karmakonda Karthik,Das M. Swamy,Ravi Guguloth

Abstract

Wireless sensor networks (WSNs), which may be used for a broad variety of applications, have recently emerged as a prominent data collection paradigm. The fundamental concerns in wireless sensor networks are the efficient use of energy and the reliable delivery of data, both of which are largely determined by the rate at which packets are dropped. When developing an energy-efficient routing protocol, one of the most important steps is selecting a node to act as a successor node in a routing path. The application of learning automata theory to guide the routing decisions made by the sensors in a WSN has recently been the subject of research in the field of WSNs, where it has been shown to have several advantages. In this paper, a learning automata-based PSO relay selection scheme for energyefficient relay selection and reliable data delivery is proposed. The network is clustered using the LEACH protocol. The random number in the traditional LEACH protocol will be stabilized with the sensor node energy level for CH stability. Every sensor node in the network estimates the best possible routes to the sink node using the PSO algorithm. Instead of retransmissions, here we introduce learning automata for successor node selection during packet loss. The proposed learning automata calculate the next node’s selection probability in a routing path using multi-objective parameters like communication cost, residual energy, distance from BS, buffer size, and previous selection probability. Performance evaluation clearly showed that the proposed approach decreases energy usage, transmission delays, and data transfers while extending network lifetime. According to the experimental results, the proposed scheme can improve energy efficiency by 21.68%, delay by 31%, PDR by 87%, routing overhead by 0.5%, and throughput by 18.76% as compared to existing techniques like O-LEACH (Optimized Low Energy Adaptive Clustering Hierarchy Protocol) and EEPC (enhanced energy proficient clustering).

Publisher

Universal Wiser Publisher Pte. Ltd

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3