Host Viral Load During Triple Coinfection of SARS-CoV-2, Influenza Virus, and Syncytial Virus

Author:

Taye Mesfin AsfawORCID

Abstract

The dynamics of the host viral load during triple coinfection between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A, and the syncytial virus is studied. To explore how the host cells, the infected cells, and the viral load behave as a function of time, numerical simulations are performed. Via numerical simulations, the differential equations are analyzed by considering initial conditions. Since the numerical simulations are performed by using the physiological parameters, the model system can genuinely help to understand the viral dynamics either in vivo or in vitro. The result obtained in this work depicts that a higher viral load is exhibited when the three viruses simultaneously infect the host cells than in a single infection case. This indicates that simultaneous infection with SARS-CoV-2, influenza A, and syncytial viruses might be associated with a higher morbidity and mortality rate as these viruses by cooperating with each other facilitate a higher infection rate. Using physiological parameters, we further study the correlation between viral load, susceptible cells, and infected cells. As the three viral species cooperatively infect the host cells, the number of infected cells rises resulting in a higher viral load. Since influenza A has a higher viral reproduction rate than the two types of virus, it dictates the overall dynamics as it has a competitive advantage. Since these viruses share the same resources, the virus production of a given virus can be affected by the other. The interference of these viruses relies on the initial dose, the order of infection, and the strain of the virus. We show that when influenza A and syncytial viruses are initiated a few days after SARS-CoV-2 establishes an infection, while SARS-CoV-2 thrives, and the other two viruses fail to establish an infection. The viruses with an initially higher dose have also a survival advantage. Furthermore, the effect of lymphocytes on the overall viral dynamics is explored via numerical simulations. Since SARS-CoV-2 targets several types of cells and organs, a higher SARS-CoV-2 viral load can be also associated with a higher morbidity and mortality rate.

Publisher

Universal Wiser Publisher Pte. Ltd

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3