Machine Learning for Intrusion Detection in Ad-hoc Networks: Wormhole and Blackhole Attacks Case

Author:

Aurelle Tchagna Kouanou ,Theophile Fozin Fonzin ,Franck Mani Zanga ,Adèle Ngo Mouelas ,Gerad Nzebop Ndenoka ,Michael Sone Ekonde

Abstract

This paper addresses the security concerns associated with Mobile Ad-hoc Networks (MANET) and proposes a new method for detecting and preventing attacks using machine learning. The study involved the creation of a MANET with 26 nodes in NetSim (Network Simulator) software, followed by the implementation of wormhole and blackhole attacks. A dataset was generated from the network traffic obtained during the simulations, and a machine-learning model was designed to predict and detect these attacks. The model achieved high sensitivity, accuracy and f1 scores of 99%. The effectiveness of the model was tested by developing a real-time application. This method can be applied to any wireless network and is particularly relevant for companies that use Ad-hoc networks for communication.

Publisher

Universal Wiser Publisher Pte. Ltd

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3