Affiliation:
1. Universite Joseph KI-ZERBO
2. Université Joseph KI-ZERBO
Abstract
In this work, we study the existence and regularity of solutions for some second order differential equations with infinite delay in Banach spaces. We suppose that the undelayed part admits a cosine operator in the sense given by Da Prato and Giusi, [ G. Da Prato and E. Giusi, \emph{Una caratterizzazione dei generatori di funzioni coseno astratte}, Bollettino dell'Unione Matematica Italiana, 22, 357-362, (1967)]. The delayed part is assumed to be locally Lipschitz. Firstly, we show the existence of the mild solutions. Secondly, we give sufficient conditions ensuring the existence of strict solutions.
Publisher
Journal of Universal Mathematics
Reference15 articles.
1. F. S. Acharya, Controllability of Second Order Semilinear Impulsive Partial Neutral Functional Differential Equations with Infinite Delay, International Journal of Mathematical Sciences and Applications, pp.207-218 (2013).
2. R. Benkhalti, K. Ezzinbi, Existence and stability in the α-norm for some partial functional differential equations with infinite delay, Differential and Integral Equations, Vol.19, No.5, pp.545-572 (2006).
3. J. Bochenek, An abstract nonlinear second order differential equation, Annales Polonici Mathematici, pp.155-166 (1991).
4. G. Da Prato, E. Giusi, Una caratterizzazione dei generatori di funzioni coseno astratte, Bollettino dell’Unione Matematica Italiana, Vol.22, pp.357-362 (1967).
5. H.O Fattorini, Ordinary differential equations in linear topological spaces, II, Journal Differential Equations, Vol.6, pp.50-70 (1969).