Optimization and Field Demonstration of a Passive Sampling Technology for Monitoring Conventional Munition Constituents in Aquatic Environments

Author:

Rosen Gunther,Wild Bill,George Robert D.,Belden Jason B.,Lotufo Guilherme R.

Abstract

AbstractAs a result of military training and weapon testing activities, unexploded ordnance (UXO; including munitions such as bombs, projectiles, and mines that did not function as intended) are present in underwater environments. Munitions are also present at underwater sites as discarded military munitions (DMM). In addition to explosive safety considerations, regulators are increasingly concerned about potential ecological impacts on the aquatic environment following corrosion and breaching shells that may cause the slow release of the explosive material by dissolution to the surrounding sediments and water column. Challenges such as the high level of effort required to identify leaking munitions and potential for slow and intermittent release resulting in ultralow concentrations (i.e., part per trillion) may hinder the assessment of environmental exposures using traditional water sampling and analysis techniques. Recently, integrative passive samplers, specifically polar organic chemical integrative samplers (POCIS), have been demonstrated by our team to be valuable tools for the environmental exposure assessment of munition constituents (MC) in aquatic environments. POCIS can be deployed for weeks to months and continuously sample the water, providing the opportunity to capture episodic events or fluctuations in contaminant release, even at low concentrations. The resulting time-weighted average (TWA) water concentration can then be compared with screening values in the context of ecological risk potential and relevance for remedial action. Our preliminary results from POCIS employed under field conditions indicate that it is a robust approach to understanding and validating the release and transport behaviors of MC and subsequent exposure characterization in the vicinity of potentially breached UXO or DMM in ocean environments.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3