A Bayesian Approach to Supervisory Risk Control of AUVs Applied to Under-Ice Operations

Author:

Bremnes Jens E.,Thieme Christoph A.,Sørensen Asgeir J.,Utne Ingrid B.,Norgren Petter

Abstract

AbstractAutonomous underwater vehicles (AUVs) are efficient sensor-carrying platforms for mapping and monitoring undersea ice. However, under-ice operations impose demanding requirements to the system, as it must deal with uncertain and unstructured environments, harsh environmental conditions, and reduced capabilities of the navigational sensors. This paper proposes a Bayesian approach to supervisory risk control, with the objective of providing risk management capabilities to the control system. First, an altitude guidance law for following a contour of an ice surface via pitch control using measurements from a Doppler velocity log (DVL) is proposed. Furthermore, a Bayesian network (BN) for probabilistic reasoning over the current state of risk during the operation is developed. This is then extended to a decision network (DN) for autonomously adapting the behavior of the AUV in order to maximize the mission utility, subject to a constraint on the predicted risk from the risk model. The vehicle is thus able to autonomously adapt its behavior in response to its current belief about the risk. The goal of this work is to improve the AUV performance and likelihood of mission success. Results from a simulation study are presented in order to demonstrate the performance of the proposed method.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Reference40 articles.

1. Practical implications of the risk perspectives;Aven;Reliab Eng Syst Safe,2013

2. A critical review of thermal issues in lithium-ion batteries;Bandhauer;J Electrochem,2011

3. Intelligent risk-based under-ice altitude control for autonomous underwater vehicles;Bremnes,2019

4. A Bayesian approach for predicting risk of autonomous underwater vehicle loss during their missions;Brito;Reliab Eng Syst Safe,2016

5. Results of expert judgments on the faults and risks with Autosub3 and an analysis of its campaign to Pine Island Bay, Antarctica, 2009;Brito,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3