Abstract
The Bayesian way of accounting for the effects of error in the ability and item parameters in adaptive testing is through the joint posterior distribution of all parameters. An optimized Markov chain Monte Carlo algorithm for adaptive testing is presented, which samples this distribution in real time to score the examinee’s ability and optimally select the items. Thanks to extremely rapid convergence of the Markov chain and simple posterior calculations, the algorithm is ready for use in real-world adaptive testing with running times fully comparable with algorithms that fix all parameters at point estimates during testing.
Publisher
American Educational Research Association (AERA)
Subject
Social Sciences (miscellaneous),Education
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献