Is It Who You Are or Where You Are? Accounting for Compositional Differences in Cross-Site Treatment Effect Variation

Author:

Lu Benjamin1,Ben-Michael Eli2,Feller Avi1,Miratrix Luke3

Affiliation:

1. University of California, Berkeley

2. Carnegie Mellon University

3. Harvard University

Abstract

In multisite trials, learning about treatment effect variation across sites is critical for understanding where and for whom a program works. Unadjusted comparisons, however, capture “compositional” differences in the distributions of unit-level features as well as “contextual” differences in site-level features, including possible differences in program implementation. Our goal in this article is to adjust site-level estimates for differences in the distribution of observed unit-level features: If we can reweight (or “transport”) each site to have a common distribution of observed unit-level covariates, the remaining treatment effect variation captures contextual and unobserved compositional differences across sites. This allows us to make apples-to-apples comparisons across sites, parceling out the amount of cross-site effect variation explained by systematic differences in populations served. In this article, we develop a framework for transporting effects using approximate balancing weights, where the weights are chosen to directly optimize unit-level covariate balance between each site and the common target distribution. We first develop our approach for the general setting of transporting the effect of a single-site trial. We then extend our method to multisite trials, assess its performance via simulation, and use it to analyze a series of multisite trials of adult education and vocational training programs. In our application, we find that distributional differences are potentially masking cross-site variation. Our method is available in the balancer R package.

Funder

Institute of Education Sciences

Publisher

American Educational Research Association (AERA)

Subject

Social Sciences (miscellaneous),Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving the Estimation of Site-Specific Effects and Their Distribution in Multisite Trials;Journal of Educational and Behavioral Statistics;2024-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3