Affiliation:
1. The Chinese University of Hong Kong
Abstract
In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects of fixed covariate in its various components. Methods for computing the ML estimates, and the Bayesian information criterion (BIC) for model comparison are established on the basis of powerful tools in statistical computing such as the Monte Carlo EM algorithm, Gibbs sampler, Metropolis–Hastings algorithm, conditional maximization, bridge sampling, and path sampling. The newly developed procedures are illustrated by results obtained from a simulation study and analysis of a real data set in education.
Publisher
American Educational Research Association (AERA)
Subject
Social Sciences (miscellaneous),Education
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献