Abstract
Abstract
This paper proposes a fairly general new point of view on the question of asymptotic stability of (topological) solitons. Our approach is based on the use of the distorted Fourier transform at the nonlinear level; it does not rely only on Strichartz or virial estimates and is therefore able to treat low-power nonlinearities (hence also nonlocalised solitons) and capture the global (in space and time) behaviour of solutions.
More specifically, we consider quadratic nonlinear Klein-Gordon equations with a regular and decaying potential in one space dimension. Additional assumptions are made so that the distorted Fourier transform of the solution vanishes at zero frequency. Assuming also that the associated Schrödinger operator has no negative eigenvalues, we obtain global-in-time bounds, including sharp pointwise decay and modified asymptotics, for small solutions.
These results have some direct applications to the asymptotic stability of (topological) solitons, as well as several other potential applications to a variety of related problems. For instance, we obtain full asymptotic stability of kinks with respect to odd perturbations for the double sine-Gordon problem (in an appropriate range of the deformation parameter). For the
$\phi ^4$
problem, we obtain asymptotic stability for small odd solutions, provided the nonlinearity is projected on the continuous spectrum. Our results also go beyond these examples since our framework allows for the presence of a fully coherent phenomenon (a space-time resonance) at the level of quadratic interactions, which creates a degeneracy in distorted Fourier space. We devise a suitable framework that incorporates this and use multilinear harmonic analysis in the distorted setting to control all nonlinear interactions.
Publisher
Cambridge University Press (CUP)
Subject
Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Analysis
Reference77 articles.
1. Asymptotic stability of solitons for mKdV;Germain;Advances in Math.,2016
2. [6] Chen, G. , Liu, J. and Lu, B. . Long-time asymptotics and stability for the sine-Gordon equation Preprint arXiv:2009.04260.
3. A vector field method on the distorted Fourier side and decay for wave equations with potentials;Donninger;Mem. Amer. Math. Soc.,2016
4. On asymptotic stability of solitary waves for nonlinear Schrödinger equations;Buslaev;Ann. Inst. H. Poincaré Anal. Non Linéaire,2003
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献