Almost all orbits of the Collatz map attain almost bounded values

Author:

Tao TerenceORCID

Abstract

Abstract Define the Collatz map ${\operatorname {Col}} \colon \mathbb {N}+1 \to \mathbb {N}+1$ on the positive integers $\mathbb {N}+1 = \{1,2,3,\dots \}$ by setting ${\operatorname {Col}}(N)$ equal to $3N+1$ when N is odd and $N/2$ when N is even, and let ${\operatorname {Col}}_{\min }(N) := \inf _{n \in \mathbb {N}} {\operatorname {Col}}^n(N)$ denote the minimal element of the Collatz orbit $N, {\operatorname {Col}}(N), {\operatorname {Col}}^2(N), \dots $ . The infamous Collatz conjecture asserts that ${\operatorname {Col}}_{\min }(N)=1$ for all $N \in \mathbb {N}+1$ . Previously, it was shown by Korec that for any $\theta> \frac {\log 3}{\log 4} \approx 0.7924$ , one has ${\operatorname {Col}}_{\min }(N) \leq N^\theta $ for almost all $N \in \mathbb {N}+1$ (in the sense of natural density). In this paper, we show that for any function $f \colon \mathbb {N}+1 \to \mathbb {R}$ with $\lim _{N \to \infty } f(N)=+\infty $ , one has ${\operatorname {Col}}_{\min }(N) \leq f(N)$ for almost all $N \in \mathbb {N}+1$ (in the sense of logarithmic density). Our proof proceeds by establishing a stabilisation property for a certain first passage random variable associated with the Collatz iteration (or more precisely, the closely related Syracuse iteration), which in turn follows from estimation of the characteristic function of a certain skew random walk on a $3$ -adic cyclic group $\mathbb {Z}/3^n\mathbb {Z}$ at high frequencies. This estimation is achieved by studying how a certain two-dimensional renewal process interacts with a union of triangles associated to a given frequency.

Publisher

Cambridge University Press (CUP)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Analysis

Reference24 articles.

1. Iteration of the number-theoretic function f(2n) = n, f(2n + 1) = 3n + 2

2. [6] Chamberland, M. , A $3x+1$ survey: number theory and dynamical systems, The ultimate challenge: the $3x+1$ problem, 57–78, Amer. Math. Soc., Providence, RI, 2010.

3. The $3x + 1$ Problem: Two Stochastic Models

4. Statistical (3x + 1) problem

5. THE LOGARITHMICALLY AVERAGED CHOWLA AND ELLIOTT CONJECTURES FOR TWO-POINT CORRELATIONS

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the stopping time of the Collatz map in F2[x];Finite Fields and Their Applications;2024-10

2. Some extensions of Collatz (periodic) conjecture;Applied Mathematics and Computation;2024-08

3. Functional Analysis Approach to the Collatz Conjecture;Results in Mathematics;2024-04-19

4. Topological properties of certain iterated entire maps;Analysis and Mathematical Physics;2024-02-26

5. Stochastic-like characteristics of arithmetic dynamical systems: the Collatz hailstone sequences;Journal of Physics: Complexity;2024-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3